A New Algorithm for Sequential Minor Component Analysis
نویسندگان
چکیده
منابع مشابه
A generalized learning algorithm of minor component
This paper proposes a generalized nonlinear minor component analysis algorithm. First, we will prove that with appropriate nonlinear functions the proposed algorithm can extract adaptively the minor component. Then we will discuss how to choose the related nonlinear functions so as to guarantee the desired convergence. Furthermore, we will show that all the other available minor component analy...
متن کاملA New Algorithm for Load Flow Analysis in Autonomous Networks
In this paper, a novel algorithm for the load flow analysis problem in an islanded microgrid is proposed. The problem is modeled without any slack bus by considering the steady state frequency as one of the load flow variables. To model different control modes of DGs, such as droop, PV and PQ, in an islanded microgrid, a new formula for load flow equations is proposed. A hybrid optimization alg...
متن کاملChaos control with STM of minor component analysis learning algorithm
One of the most important techniques of feature extraction, i.e., the minor component analysis (MCA), has been widely employed in the field of data analysis. In order to meet the demands of real time computing and curtail the computational complexity, one instrument is often applied, namely, the MCA neural networks, whose learning algorithm, under some conditions, however, can produce complex d...
متن کاملA Self-Stabilizing Learning Rule for Minor Component Analysis
The paper reviews single-neuron learning rules for minor component analysis and suggests a novel minor component learning rule. In this rule, the weight vector length is self-stabilizing, i.e., moving towards unit length in each learning step. In simulations with low- and medium-dimensional data, the performance of the novel learning rule is compared with previously suggested rules.
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational Intelligence Research
سال: 2006
ISSN: 0974-1259
DOI: 10.5019/j.ijcir.2006.63